Advertisement
Review Article| Volume 3, ISSUE 1, P73-94, November 2022

Download started.

Ok

Update on Magnetic Resonance Imaging of the Brain and Spine

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Small Animal Care
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Edelman R.R.
        The history of MR imaging as seen through the pages of radiology.
        Radiology. 2014; 273: 181-200
        • Alfidi R.J.
        • Haaga J.R.
        • El-Yousef S.J.
        • et al.
        Preliminary experimental results in humans and animals with a superconducting, whole-body, nuclear magnetic resonance scanner.
        Radiology. 1982; 143: 175-181
        • Runge V.M.
        • Price A.C.
        • Wehr C.J.
        • et al.
        Contrast enhanced MRI. Evaluation of a canine model of osmotic blood-brain barrier disruption.
        Invest Radiol. 1985; 20: 830-844
        • Gavin P.R.
        Growth of clinical veterinary magnetic resonance imaging.
        Vet Radiol Ultrasound. 2011; 52: S2-S4
        • Symms M.
        • Jager H.R.
        • Schmierer K.
        • et al.
        A review of structural magnetic resonance neuroimaging.
        J Neurol Neurosurg Psychiatr. 2004; 75: 1235-1244
        • Elster A.D.
        Characterizing field strength. In: Questions and answers in MRI.
        (Available at:) (Accessed January 20, 2022)
        • Konar M.
        • Lang J.
        Pros and cons of low-field magnetic resonance imaging in veterinary practice.
        Vet Radiol Ultrasound. 2011; 52: S5-S14
        • Martin-Vaquero P.
        • da Costa R.C.
        • Echandi R.L.
        • et al.
        Magnetic resonance spectroscopy of the canine brain at 3.0 T and 7.0 T.
        Res Vet Sci. 2012; 93: 427-429
        • Mai W.
        Technical particularities with low-field imaging.
        in: Mai W. Diagnostic MRI in dogs and cats. CRC Press, Boca Raton2018: 153-160
        • Elster A.D.
        Magnetic field gradient defined. In: Questions and answers in MRI.
        (Available at:) (Accessed January 20, 2022)
        • Gruber B.
        • Froeling M.
        • Leiner T.
        • et al.
        RF coils: a practical guide for nonphysicists.
        J Magn Reson Imaging. 2018; 48: 590-604
        • Mai W.
        Image characteristics in MRI and principal pulse sequences.
        in: Mai W. Diagnostic MRI in dogs and cats. CRC Press, Boca Raton2018: 36-69
        • Dennis R.
        Optimized technique: spine.
        in: Mai W. Diagnostic MRI in dogs and cats. CRC Press, Boca Raton2018: 106-129
        • Hecht S.
        Optimized technique: brain.
        in: Mai W. Diagnostic MRI in dogs and cats. CRC Press, Boca Raton2018: 88-105
        • Zhalniarovich Y.
        • Adamiak Z.
        • Pomianowski A.
        • et al.
        Most commonly used sequences and clinical protocols for brain and spine magnetic resonance imaging allowing better identification of pathological changes in dogs.
        Pol J Vet Sci. 2013; 16: 157-163
        • Hecht S.
        • Anderson K.M.
        • Castel A.
        • et al.
        Agreement of magnetic resonance imaging with computed tomography in the assessment for acute skull fractures in a canine and feline cadaver model.
        Front Vet Sci. 2021; https://doi.org/10.3389/fvets.2021.603775
        • Miyabayashi T.
        • Smith M.
        • Tsuruno Y.
        Comparison of fast spin-echo and conventional spin-echo magnetic resonance spinal imaging techniques in four normal dogs.
        Vet Radiol Ultrasound. 2000; 41: 308-312
        • Sage J.E.
        • Samii V.F.
        • Abramson C.J.
        • et al.
        Comparison of conventional spin-echo and fast spin-echo magnetic resonance imaging in the canine brain.
        Vet Radiol Ultrasound. 2006; 47: 249-253
        • Castillo M.
        • Mukherji S.K.
        Clinical applications of FLAIR, HASTE, and magnetization transfer in neuroimaging.
        Semin Ultrasound CT MR. 2000; 21: 417-427
        • Rumboldt Z.
        • Marotti M.
        Magnetization transfer, HASTE, and FLAIR imaging.
        Magn Reson Imaging Clin N Am. 2003; 11: 471-492
        • Pease A.
        • Sullivan S.
        • Olby N.
        • et al.
        Value of a single-shot turbo spin-echo pulse sequence for assessing the architecture of the subarachnoid space and the constitutive nature of cerebrospinal fluid.
        Vet Radiol Ultrasound. 2006; 47: 254-259
        • Mankin J.M.
        • Hecht S.
        • Thomas W.B.
        Agreement between T2 and Haste sequences in the evaluation of thoracolumbar intervertebral disc disease in dogs.
        Vet Radiol Ultrasound. 2012; 53: 162-166
        • Seiler G.S.
        • Robertson I.D.
        • Mai W.
        • et al.
        Usefulness of a half-Fourier acquisition single-shot turbo spin-echo pulse sequence in identifying arachnoid diverticula in dogs.
        Vet Radiol Ultrasound. 2012; 53: 157-161
        • Gilmour L.J.
        • Jeffery N.D.
        • Miles K.
        • et al.
        Single-shot turbo spin echo pulse sequence findings in dogs with and without progressive myelomalacia.
        Vet Radiol Ultrasound. 2017; 58: 197-205
        • Mugler J.P.
        Optimized three-dimensional fast-spin-echo MRI.
        J Magn Reson Imaging. 2014; 39: 745-767
        • Lee S.
        • Hwang J.
        • Ko J.
        • et al.
        Comparison between T2-weighted two-dimensional and three-dimensional fast spin-echo MRI sequences for characterizing thoracolumbar intervertebral disc disease in small-breed dogs.
        Vet Radiol Ultrasound. 2022; https://doi.org/10.1111/vru.13049
        • Cherubini G.B.
        • Platt S.R.
        • Howson S.
        • et al.
        Comparison of magnetic resonance imaging sequences in dogs with multi-focal intracranial disease.
        J Small Anim Pract. 2008; 49: 634-640
        • Castillo G.
        • Parmentier T.
        • Monteith G.
        • et al.
        Inner ear fluid-attenuated inversion recovery MRI signal intensity in dogs with vestibular disease.
        Vet Radiol Ultrasound. 2020; 61: 531-539
        • Falzone C.
        • Rossi F.
        • Calistri M.
        • et al.
        Contrast-enhanced fluid-attenuated inversion recovery vs. contrast-enhanced spin echo T1-weighted brain imaging.
        Vet Radiol Ultrasound. 2008; 49: 333-338
        • Merhof K.
        • Lang J.
        • Durr S.
        • et al.
        Use of contrast-enhanced fluid-attenuated inversion recovery sequence to detect brain lesions in dogs and cats.
        J Vet Intern Med. 2014; 28: 1263-1267
        • Allett B.
        • Hecht S.
        Magnetic resonance imaging findings in the spine of six dogs diagnosed with lymphoma.
        Vet Radiol Ultrasound. 2016; 57: 154-161
        • Auger M.
        • Hecht S.
        • Springer C.M.
        Magnetic resonance imaging features of extradural spinal neoplasia in 60 dogs and 7 cats.
        Front Vet Sci. 2020; https://doi.org/10.3389/fvets.2020.610490
        • Morrison E.J.
        • Baron-Chapman M.L.
        • Chalkley M.
        MRI T2/STIR epaxial muscle hyperintensity in some dogs with intervertebral disc extrusion corresponds to histologic patterns of muscle degeneration and inflammation.
        Vet Radiol Ultrasound. 2021; 62: 150-160
        • Young B.D.
        • Mankin J.M.
        • Griffin J.F.
        • et al.
        Comparison of two fat-suppressed magnetic resonance imaging pulse sequences to standard T2-weighted images for brain parenchymal contrast and lesion detection in dogs with inflammatory intracranial disease.
        Vet Radiol Ultrasound. 2015; 56: 204-211
        • Feger J.
        • Baba Y.
        Phase-sensitive inversion recovery. In: Radiopaedia.
        (Available at:) (Accessed January 26, 2022)
        • Hecht S.
        • Adams W.H.
        • Narak J.
        • et al.
        Magnetic resonance imaging susceptibility artifacts due to metallic foreign bodies.
        Vet Radiol Ultrasound. 2011; 52: 409-414
        • Chavhan G.B.
        • Babyn P.S.
        • Jankharia B.G.
        • et al.
        Steady-state MR imaging sequences: physics, classification, and clinical applications.
        Radiographics. 2008; 28: 1147-1160
        • Hammond L.J.
        • Hecht S.
        Susceptibility artifacts on T2∗-weighted magnetic resonance imaging of the canine and feline spine.
        Vet Radiol Ultrasound. 2015; 56: 398-406
        • Hodshon A.W.
        • Hecht S.
        • Thomas W.B.
        Use of the T2∗-weighted gradient recalled echo sequence for magnetic resonance imaging of the canine and feline brain.
        Vet Radiol Ultrasound. 2014; 55: 599-606
        • Kerwin S.C.
        • Levine J.M.
        • Budke C.M.
        • et al.
        Putative cerebral microbleeds in dogs undergoing magnetic resonance imaging of the head: A retrospective study of demographics, clinical associations, and relationship to case outcome.
        J Vet Intern Med. 2017; 31: 1140-1148
        • Noh D.
        • Choi S.
        • Choi H.
        • et al.
        Evaluating traumatic brain injury using conventional magnetic resonance imaging and susceptibility-weighted imaging in dogs.
        J Vet Sci. 2019; https://doi.org/10.4142/jvs.2019.20.e10
        • Weston P.
        • Morales C.
        • Dunning M.
        • et al.
        Susceptibility weighted imaging at 1.5 Tesla magnetic resonance imaging in dogs: Comparison with T2∗-weighted gradient echo sequence and its clinical indications.
        Vet Radiol Ultrasound. 2020; 61: 566-576
        • Wolfer N.
        • Wang-Leandro A.
        • Beckmann K.M.
        • et al.
        Intracranial lesion detection and artifact characterization: Comparative study of susceptibility and T2∗-weighted imaging in dogs and cats.
        Front Vet Sci. 2021; https://doi.org/10.3389/fvets.2021.779515
        • van der Vlugt-Meijer R.H.
        • Meij B.P.
        • Voorhout G.
        Thin-slice three-dimensional gradient-echo magnetic resonance imaging of the pituitary gland in healthy dogs.
        Am J Vet Res. 2006; 67: 1865-1872
        • Fleming K.L.
        • Maddox T.W.
        • Warren-Smith C.M.R.
        Three-dimensional T1-weighted gradient echo is a suitable alternative to two-dimensional T1-weighted spin echo for imaging the canine brain.
        Vet Radiol Ultrasound. 2019; 60: 543-551
        • Smith P.M.
        • Goncalves R.
        • McConnell J.F.
        Sensitivity and specificity of MRI for detecting facial nerve abnormalities in dogs with facial neuropathy.
        Vet Rec. 2012; 171: 349
        • Tauro A.
        • Di Dona F.
        • Garosi L.S.
        "Golf-tee sign" on 3D-CISS MRI sequences in a dog with spinal nephroblastoma.
        J Small Anim Pract. 2021; 62: 610
        • Tauro A.
        • Jovanovik J.
        • Driver C.J.
        • et al.
        Clinical application of 3D-CISS MRI sequences for diagnosis and surgical planning of spinal arachnoid diverticula and adhesions in dogs.
        Vet Comp Orthop Traumatol. 2018; 31: 83-94
        • Baliyan V.
        • Das C.J.
        • Sharma R.
        • et al.
        Diffusion weighted imaging: technique and applications.
        World J Radiol. 2016; 8: 785-798
        • McConnell J.F.
        Ischemic brain disease and vascular anomalies.
        in: Mai W. Diagnostic MRI in dogs and cats. CRC Press, Boca Raton2018: 251-281
        • Garosi L.S.
        • McConnell J.F.
        Ischaemic stroke in dogs and humans: a comparative review.
        J Small Anim Pract. 2005; 46: 521-529
        • Bhuta S.
        • Saber M.
        Diffusion weighted MRI in acute stroke.
        (Radiopaedia. Available at:) (Accessed January 26th 2022)
        • Mai W.
        Reduced field-of-view diffusion-weighted MRI can identify restricted diffusion in the spinal cord of dogs and cats with presumptive clinical and high-field MRI diagnosis of acute ischemic myelopathy.
        Vet Radiol Ultrasound. 2020; 61: 688-695
        • Hartmann A.
        • Sager S.
        • Failing K.
        • et al.
        Diffusion-weighted imaging of the brains of dogs with idiopathic epilepsy.
        BMC Vet Res. 2017; 13: 338
        • Fages J.
        • Oura T.J.
        • Sutherland-Smith J.
        • et al.
        Atypical and malignant canine intracranial meningiomas may have lower apparent diffusion coefficient values than benign tumors.
        Vet Radiol Ultrasound. 2020; 61: 40-47
        • Scherf G.
        • Sutherland-Smith J.
        • Uriarte A.
        Dogs and cats with presumed or confirmed intracranial abscessation have low apparent diffusion coefficient values.
        Vet Radiol Ultrasound. 2022; https://doi.org/10.1111/vru.13064
        • Anaya Garcia M.S.
        • Hernandez Anaya J.S.
        • Marrufo Melendez O.
        • et al.
        In vivo study of cerebral white matter in the dog using diffusion tensor tractography.
        Vet Radiol Ultrasound. 2015; 56: 188-195
        • Pease A.
        • Miller R.
        The use of diffusion tensor imaging to evaluate the spinal cord in normal and abnormal dogs.
        Vet Radiol Ultrasound. 2011; 52: 492-497
        • Jacqmot O.
        • Van Thielen B.
        • Fierens Y.
        • et al.
        Diffusion tensor imaging of white matter tracts in the dog brain.
        Anat Rec. 2013; 296: 340-349
        • Jacqmot O.
        • Van Thielen B.
        • Michotte A.
        • et al.
        Neuroanatomical reconstruction of the canine visual pathway using diffusion tensor imaging.
        Front Neuroanat. 2020; 14: 54https://doi.org/10.3389/fnana.2020.00054
        • Jacqmot O.
        • Van Thielen B.
        • Michotte A.
        • et al.
        Comparison of several white matter tracts in feline and canine brain by using magnetic resonance diffusion tensor imaging.
        Anat Rec. 2017; 300: 1270-1289
        • Tidwell A.S.
        • Robertson I.D.
        Magnetic resonance imaging of normal and abnormal brain perfusion.
        Vet Radiol Ultrasound. 2011; 52: S62-S71
        • Hartmann A.
        • Driesen A.
        • Lautenschlager I.E.
        • et al.
        Quantitative analysis of brain perfusion in healthy dogs by means of magnetic resonance imaging.
        Am J Vet Res. 2016; 77: 1227-1235
        • Hartmann A.
        • von Klopmann C.
        • Lautenschlager I.E.
        • et al.
        Quantitative analysis of brain perfusion parameters in dogs with idiopathic epilepsy by use of magnetic resonance imaging.
        Am J Vet Res. 2018; 79: 433-442
        • Hoffmann A.C.
        • Ruel Y.
        • Gnirs K.
        • et al.
        Brain perfusion magnetic resonance imaging using pseudocontinuous arterial spin labeling in 314 dogs and cats.
        J Vet Intern Med. 2021; 35: 2327-2341
        • Carrera I.
        • Richter H.
        • Meier D.
        • et al.
        Regional metabolite concentrations in the brain of healthy dogs measured by use of short echo time, single voxel proton magnetic resonance spectroscopy at 3.0 Tesla.
        Am J Vet Res. 2015; 76: 129-141
        • Vite C.H.
        • McGowan J.C.
        Magnetization transfer imaging of the canine brain: a review.
        Vet Radiol Ultrasound. 2001; 42: 5-8
        • Berns G.S.
        • Brooks A.M.
        • Spivak M.
        Scent of the familiar: an fMRI study of canine brain responses to familiar and unfamiliar human and dog odors.
        Behav Processes. 2015; 110: 37-46
        • Ishikawa C.
        • Ito D.
        • Kitagawa M.
        • et al.
        Comparison of conventional magnetic resonance imaging and nonenhanced three dimensional time-of-flight magnetic resonance angiography findings between dogs with meningioma and dogs with intracranial histiocytic sarcoma: 19 cases (2010-2014).
        J Am Vet Med Assoc. 2016; 248: 1139-1147
        • Ishikawa C.
        • Ito D.
        • Tanaka N.
        • et al.
        Use of three-dimensional time-of-flight magnetic resonance angiography at 1.5 Tesla to evaluate the intracranial arteries of 39 dogs with idiopathic epilepsy.
        Am J Vet Res. 2019; 80: 480-489
        • Martin-Vaquero P.
        • da Costa R.C.
        • Echandi R.L.
        • et al.
        Time-of-flight magnetic resonance angiography of the canine brain at 3.0 Tesla and 7.0 Tesla.
        Am J Vet Res. 2011; 72: 350-356
        • Sager M.
        • Assheuer J.
        • Trummler H.
        • et al.
        Contrast-enhanced magnetic resonance angiography (CE-MRA) of intra- and extra-cranial vessels in dogs.
        Vet J. 2009; 179: 92-100
        • Delfaut E.M.
        • Beltran J.
        • Johnson G.
        • et al.
        Fat suppression in MR imaging: techniques and pitfalls.
        Radiographics. 1999; 19: 373-382
        • D'Anjou M.A.
        • Carmel E.N.
        • Tidwell A.S.
        Value of fat suppression in gadolinium-enhanced magnetic resonance neuroimaging.
        Vet Radiol Ultrasound. 2011; 52: S85-S90
        • Freeman A.C.
        • Platt S.R.
        • Kent M.
        • et al.
        Magnetic resonance imaging enhancement of intervertebral disc disease in 30 dogs following chemical fat saturation.
        J Small Anim Pract. 2012; 53: 120-125
        • Keenihan E.K.
        • Summers B.A.
        • David F.H.
        • et al.
        Canine meningeal disease: associations between magnetic resonance imaging signs and histologic findings.
        Vet Radiol Ultrasound. 2013; 54: 504-515
        • Lamb C.R.
        • Lam R.
        • Keenihan E.K.
        • et al.
        Appearance of the canine meninges in subtraction magnetic resonance images.
        Vet Radiol Ultrasound. 2014; 55: 607-613
        • Packer R.A.
        • Rossmeisl J.H.
        • Kent M.S.
        • et al.
        Consensus recommendations on standardized magnetic resonance imaging protocols for multicenter canine brain tumor clinical trials.
        Vet Radiol Ultrasound. 2018; 59: 796
        • Rusbridge C.
        • Long S.
        • Jovanovik J.
        • et al.
        International Veterinary Epilepsy Task Force recommendations for a veterinary epilepsy-specific MRI protocol.
        BMC Vet Res. 2015; 11: 194https://doi.org/10.1186/s12917-015-0466-x
        • Dennis R.
        Optimal magnetic resonance imaging of the spine.
        Vet Radiol Ultrasound. 2011; 52: S72-S80
        • Robertson I.
        Optimal magnetic resonance imaging of the brain.
        Vet Radiol Ultrasound. 2011; 52: S15-S22