Advertisement

Peripheral Concentration of Amyloid-β, TAU Protein, and Neurofilament Light Chain as Markers of Cognitive Dysfunction Syndrome in Senior Dogs

A Meta-analysis

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Advances in Small Animal Care
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Piotti P.
        • Szabó D.
        • Wallis L.
        • et al.
        The effect of age on visuo-spatial short-term memory in family dogs.
        Pet Behav Sci. 2017; : 17https://doi.org/10.21071/pbs.v0i4.10130
        • Piotti P.
        • Szabó D.
        • Bognár Z.
        • et al.
        Effect of age on discrimination learning, reversal learning, and cognitive bias in family dogs.
        Learn Behav. 2018; 46: 537-553
        • Szabó D.
        • Gee N.R.
        • Miklósi A.
        Natural or pathologic? Discrepancies in the study of behavioral and cognitive signs in aging family dogs.
        J Vet Behav Clin Appl Res. 2016; 11: 86-98
        • Hedden T.
        • Gabrieli J.D.E.
        Insights into the ageing mind: a view from cognitive neuroscience.
        Nat Rev Neurosci. 2004; 5: 87-96
        • Landsberg G.
        • Araujo J.A.
        Behavior problems in geriatric pets.
        Vet Clin North America - Small Anim Pract. 2005; 35: 675-698
        • Azkona G.
        • García-Belenguer S.
        • Chacón G.
        • et al.
        Prevalence and risk factors of behavioural changes associated with age-related cognitive impairment in geriatric dogs.
        J small Anim Pract. 2009; 50: 87-91
        • Fast R.
        • Schütt T.
        • Toft N.
        • et al.
        An observational study with long-term follow-up of canine cognitive dysfunction: clinical characteristics, survival, and risk factors.
        J Vet Intern Med. 2013; 27: 822-829
        • Katina S.
        • Farbakova J.
        • Madari A.
        • et al.
        Risk factors for canine cognitive dysfunction syndrome in Slovakia.
        Acta veterinaria Scand. 2016; 58: 17
        • Madari A.
        • Farbakova J.
        • Katina S.
        • et al.
        Assessment of severity and progression of canine cognitive dysfunction syndrome using the CAnine DEmentia Scale (CADES).
        Appl Anim Behav Sci. 2015; : 138-145
        • Neilson J.C.
        • Hart B.L.
        • Cliff K.D.
        • et al.
        Prevalence of behavioral changes associated with age-related cognitive impairment in dogs.
        J Am Vet Med Assoc. 2001; 218: 1787-1791
        • Osella M.C.
        • Re G.
        • Odore R.
        • et al.
        Canine cognitive dysfunction syndrome: prevalence, clinical signs and treatment with a neuroprotective nutraceutical.
        Appl Anim Behav Sci. 2007; 105: 297-310
        • Salvin H.E.
        • McGreevy P.D.
        • Sachdev P.S.
        • et al.
        Under diagnosis of canine cognitive dysfunction: a cross-sectional survey of older companion dogs.
        Vet J. 2010; 184: 277-281
        • Piotti P.
        Positive emotions and quality of life in dogs.
        Anim Sentience. 2017; 090: 6
        • Manteca X.
        Nutrition and behavior in senior dogs.
        Top Companion Anim Med. 2011; 26: 33-36
      1. Landsberg G. Maďari A. Žilka N. Canine and feline dementia: molecular basis, diagnostics and therapy. 1st edition. Springer International Publishing, Cham, Switzerland2017
        • Landsberg G.
        • Hunthausen W.
        • Ackerman L.
        3rd. Handbook of behavior problems of the dog and the cat. Saunders, Missouri2013
      2. Le Brech S, Amat M, Temple D, Manteca X. Two feasible methods to detect cognitive impairment in aged dogs. Presented at: 3rd European Veterinary Congress of Behavioural Medicine and Animal Welfare; 2021; Online.

        • Gunn-Moore D.
        • Moffat K.
        • Christie L.A.
        • et al.
        Cognitive dysfunction and the neurobiology of ageing in cats.
        J Small Anim Pract. 2007; 48: 546-553
        • Salvin H.E.
        • McGreevy P.D.
        • Sachdev P.S.
        • et al.
        The canine cognitive dysfunction rating scale (CCDR): A data-driven and ecologically relevant assessment tool.
        Vet J. 2011; 188: 331-336https://doi.org/10.1016/j.tvjl.2010.05.014
        • González-Martínez Á.
        • Rosado B.
        • Pesini P.
        • et al.
        Plasma β-amyloid peptides in canine aging and cognitive dysfunction as a model of Alzheimer’s disease.
        Exp Gerontol. 2011; 46: 590-596
        • Boronat A.C.
        • Ferreira-Maia A.P.
        • Wang Y.P.
        Sundown syndrome in older persons: a scoping review.
        J Am Med Directors Assoc. 2019; 20: 664-671.e5
        • Bellows J.
        • Colitz C.M.H.
        • Daristotle L.
        • et al.
        Defining healthy aging in older dogs and differentiating healthy aging from disease.
        J Am Vet Med Assoc. 2015; 246: 77-89
        • Bellows J.
        • Colitz C.M.H.
        • Daristotle L.
        • et al.
        Common physical and functional changes associated with aging in dogs.
        J Am Vet Med Assoc. 2015; 246: 67-75
        • Fatjó J.
        • Bowen J.
        Medical and metabolic influences on behavioural disorders.
        in: Horwitz D.F. Mills D.S. BSAVA Manual of Canine and Feline Behavioural Medicine. chapter 1. 2nd ed. BSAVA, Glouchester, UK2009: 1-9
        • Overall K.L.
        Medical differentials with potential behavioral manifestations.
        Clin Tech small Anim Pract. 2004; 19: 250-258
        • Rofina J.E.
        • Van Ederen A.M.
        • Toussaint M.J.M.
        • et al.
        Cognitive disturbances in old dogs suffering from the canine counterpart of Alzheimer’s disease.
        Brain Res. 2006; 1069: 216-226
        • Andel I.V.
        • Ederen A.M.V.
        • Papaioannou N.
        • et al.
        Canine counterpart of senile dementia of the Alzheimer type : amyloid plaques near capillaries microglia and macrophages Canine counterpart of senile dementia of the Alzheimer type : amyloid plaques near capillaries but lack of spatial relationship with a.
        Amyloid. 2009; : 6129https://doi.org/10.3109/13506120309041730
        • Ozawa M.
        • Chambers J.K.
        • Uchida K.
        • et al.
        The relation between canine cognitive dysfunction and age-related brain lesions.
        J Vet Med Sci. 2016; https://doi.org/10.1292/jvms.15-0624
        • Su M.
        • Head E.
        • Brooks W.M.
        • et al.
        Magnetic resonance imaging of anatomic and vascular characteristics in a canine model of human aging.
        Neurobiol Aging. 1998; 19: 479-485
        • Tapp P.D.
        • Siwak C.T.
        • Estrada J.
        • et al.
        Size and reversal learning in the beagle dog as a measure of executive function and inhibitory control in aging.
        Learn Mem. 2003; 10: 64-73
        • Ruehl W.W.
        • Bruyette D.S.
        • DePaoli A.
        • et al.
        Canine cognitive dysfunction as a model for human age-related cognitive decline, dementia and Alzheimer’s disease: clinical presentation, cognitive testing, pathology and response to 1-deprenyl therapy.
        Prog Brain Res. 1995; 106: 217-225
        • Yu C.H.
        • Song G.S.
        • Yhee J.Y.
        • et al.
        Histopathological and Immunohistochemical comparison of the brain of human patients with Alzheimer’s disease and the brain of aged dogs with cognitive dysfunction.
        J Comp Pathol. 2011; 145: 45-58
        • Gafson A.R.
        • Barthélemy N.R.
        • Bomont P.
        • et al.
        Neurofilaments: neurobiological foundations for biomarker applications.
        Brain. 2020; 143: 1975-1998
        • Stylianaki I.
        • Polizopoulou Z.S.
        • Theodoridis A.
        • et al.
        Amyloid-beta plasma and cerebrospinal fluid biomarkers in aged dogs with cognitive dysfunction syndrome.
        J Vet Intern Med. 2020; 34: 1532-1540
        • Vikartovska Z.
        • Farbakova J.
        • Smolek T.
        • et al.
        Novel diagnostic tools for identifying cognitive impairment in dogs: behavior, biomarkers, and pathology.
        Front Vet Sci. 2020; 7: 551895
        • Schmidt F.
        • Boltze J.
        • Jäger C.
        • et al.
        Detection and quantification of β-amyloid, pyroglutamyl Aβ, and tau in aged canines.
        J Neuropathol Exp Neurol. 2015; 74: 912-923
        • Smolek T.
        • Madari A.
        • Farbakova J.
        • et al.
        Tau hyperphosphorylation in synaptosomes and neuroinflammation are associated with canine cognitive impairment.
        J Comp Neurol. 2016; 524: 874-895
        • Panek W.K.
        • Gruen M.E.
        • Murdoch D.M.
        • et al.
        Plasma neurofilament light chain as a translational biomarker of aging and neurodegeneration in dogs.
        Mol Neurobiol. 2020; 57: 3143-3149
        • Selkoe D.J.
        Normal and abnormal biology of the beta-amyloid precursor protein.
        Annu Rev Neurosci. 1994; 17: 489-517
        • Gu L.
        • Guo Z.
        Alzheimer’s Aβ42 and Aβ40 peptides form interlaced amyloid fibrils.
        J Neurochem. 2013; 126: 305-311
        • Head E.
        • McCleary R.
        • Hahn F.F.
        • et al.
        Region-specific age at onset of β-amyloid in dogs.
        Neurobiol Aging. 2000; 21: 89-96
        • Colle M.
        • Hauw J.
        • Crespeau F.
        • et al.
        Vascular and parenchymal A ␤deposition in the aging dog.
        correlation. Behav. 2000; 21: 695-704
        • Cummings B.J.
        • Head E.
        • Afagh A.J.
        • et al.
        Beta-amyloid accumulation correlates with cognitive dysfunction in the aged canine.
        Neurobiol Learn Mem. 1996; 66: 11-23
        • Head E.
        • Callahan H.
        • Muggenburg B.A.
        • et al.
        Visual-discrimination learning ability and β-amyloid accumulation in the dog.
        Neurobiol Aging. 1998; 19: 415-425
        • Pageat P.
        Pathologie du comportement du chien.
        1st edition. Le Point Vétérinaire, France1995
        • Borghys H.
        • Van Broeck B.
        • Dhuyvetter D.
        • et al.
        Young to middle-aged dogs with high amyloid-β levels in cerebrospinal fluid are impaired on learning in standard cognition tests.
        J Alzheimers Dis. 2017; 56: 763-774
        • Urfer S.R.
        • Darvas M.
        • Czeibert K.
        • et al.
        Canine cognitive dysfunction (CCD) scores correlate with amyloid beta 42 levels in dog brain tissue.
        Geroscience. 2021; 43: 2379-2386
        • Salvin H.E.
        • McGreevy P.D.
        • Sachdev P.S.
        • et al.
        Growing old gracefully-Behavioral changes associated with “successful aging” in the dog, Canis familiaris.
        J Vet Behav Clin Appl Res. 2011; 6: 313-320
        • Wang J.Z.
        • Xia Y.Y.
        • Grundke-Iqbal I.
        • et al.
        Abnormal hyperphosphorylation of tau: sites, regulation, and molecular mechanism of neurofibrillary degeneration.
        in: JAD. 33. 2012: S123-S139https://doi.org/10.3233/JAD-2012-129031 (s1)
        • Abey A.
        • Davies D.
        • Goldsbury C.
        • et al.
        Distribution of tau hyperphosphorylation in canine dementia resembles early Alzheimer’s disease and other tauopathies.
        Brain Pathol. 2021; 31: 144-162
        • Aggleton J.P.
        • Pralus A.
        • Nelson A.J.D.
        • et al.
        Thalamic pathology and memory loss in early Alzheimer’s disease: moving the focus from the medial temporal lobe to Papez circuit.
        Brain. 2016; 139: 1877-1890
        • Habiba U.
        • Ozawa M.
        • Chambers J.K.
        • et al.
        Neuronal deposition of amyloid-β oligomers and hyperphosphorylated tau is closely connected with cognitive dysfunction in aged dogs.
        J Alzheimers Dis Rep. 2021; 5: 749-760
        • Head E.
        • Pop V.
        • Sarsoza F.
        • et al.
        Amyloid-β peptide and oligomers in the brain and cerebrospinal fluid of aged canines.
        JAD. 2010; 20: 637-646
        • Sarasa L.
        • Allué J.A.
        • Pesini P.
        • et al.
        Identification of β-amyloid species in canine cerebrospinal fluid by mass spectrometry.
        Neurobiol Aging. 2013; 34: 2125-2132
        • Schutt T.
        • Toft N.
        • Berendt M.
        Cognitive function, progression of age-related behavioral changes, biomarkers, and survival in dogs more than 8 years old.
        J Vet Intern Med. 2015; 29: 1569-1577
        • Panek W.K.
        • Murdoch D.M.
        • Gruen M.E.
        • et al.
        Plasma amyloid beta concentrations in aged and cognitively impaired pet dogs.
        Mol Neurobiol. 2021; 58: 483-489
        • Phochantachinda S.
        • Chantong B.
        • Reamtong O.
        • et al.
        Change in the plasma proteome associated with canine cognitive dysfunction syndrome (CCDS) in Thailand.
        BMC Vet Res. 2021; 17: 60
        • Olsson B.
        • Portelius E.
        • Cullen N.C.
        • et al.
        Association of cerebrospinal fluid neurofilament light protein levels with cognition in patients with dementia, motor neuron disease, and movement disorders.
        JAMA Neurol. 2019; 76: 318
        • Perino J.
        • Patterson M.
        • Momen M.
        • et al.
        Neurofilament light plasma concentration positively associates with age and negatively associates with weight and height in the dog.
        Neurosci Lett. 2021; 744: 135593
        • Greer K.A.
        • Canterberry S.C.
        • Murphy K.E.
        Statistical analysis regarding the effects of height and weight on life span of the domestic dog.
        Res Vet Sci. 2007; 82: 208-214
        • NHLBI. Study
        Quality assessment tool.
        • Baayen R.H.
        Analyzing linguistic data: a practical introduction to statistics using R.
        Processing. 2008; 2: 353
        • Griffin J.
        • Metapowe R.
        An R package for computing meta-analytic statistical power.
        (Available at:)
        • Balduzzi S.
        • Rücker G.
        • Schwarzer G.
        How to perform a meta-analysis with R: a practical tutorial.
        Evid Based Ment Health. 2019; 22: 153-160
        • Harrer M.
        • Cujpers P.
        • Furukawa T.
        • et al.
        Dmetar: companion r package for the guide “doing meta-analysis in R.
        (Available at:)
        • Harrer M.
        • Cuijpers P.
        • Furukawa T.A.
        • et al.
        Doing meta-analysis with R: a hands-on guide.
        1st. Chapman and Hall/CRC, Oxon, UK2021
        • Blennow K.
        • Hampel H.
        • Weiner M.
        • et al.
        Cerebrospinal fluid and plasma biomarkers in Alzheimer disease.
        Nat Rev Neurol. 2010; 6: 131-144
        • Kester M.I.
        • Verwey N.A.
        • van Elk E.J.
        • et al.
        Evaluation of plasma Aβ40 and Aβ42 as predictors of conversion to Alzheimer’s disease in patients with mild cognitive impairment.
        Neurobiol Aging. 2010; 31: 539-540
        • Barcelos A.M.
        • Mills D.S.
        • Zulch H.
        Clinical indicators of occult musculoskeletal pain in aggressive dogs.
        Vet Rec. 2015; 176: 465
        • Mills D.S.
        • Demontigny-Bédard I.
        • Gruen M.
        • et al.
        Pain and problem behavior in cats and dogs.
        Animals. 2020; 10: 318
        • Piotti P.
        • Albertini M.
        • Lavesi E.
        • et al.
        Physiotherapy improves dogs’ quality of life measured with the Milan pet quality of life scale: is pain involved?.
        Vet Sci. 2022; 9: 335
        • Piotti P.
        • Karagiannis C.
        • Satchell L.P.
        • et al.
        Use of the Milan Pet Quality of Life instrument (MPQL) to measure pets’ quality of life during COVID-19.
        Animals. 2021; 11: 1336
        • Bognár Z.
        • Piotti P.
        • Szabó D.
        • et al.
        A novel behavioural approach to assess responsiveness to auditory and visual stimuli before cognitive testing in family dogs.
        Appl Anim Behav Sci. 2020; 228: 105016
        • Fefer G.
        • Panek W.K.
        • Khan M.Z.
        • et al.
        Use of cognitive testing, questionnaires, and plasma biomarkers to quantify cognitive impairment in an aging pet dog population.
        JAD. 2022; 87: 1367-1378
        • Fleyshman D.I.
        • Wakshlag J.J.
        • Huson H.J.
        • et al.
        Development of infrastructure for a systemic multidisciplinary approach to study aging in retired sled dogs.
        Aging. 2021; 13: 21814-21837
        • Beyer L.
        • Stocker H.
        • Rujescu D.
        • et al.
        Amyloid-beta misfolding and GFAP predict risk of clinical Alzheimer’s disease diagnosis within 17 years. Alzheimer’s & Dementia.
        Alzheimers Dement. 2022; https://doi.org/10.1002/alz.12745